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Abstract
In the near future, semiconductor technology will allow

the integration of multiple processors on a chip or multichip-
module (MCM). In this paper we investigate the architecture
and partitioning of resources between processors and cache
memory for single chip and MCM-based multiprocessors. We
study the performance of a cluster-based multiprocessor archi-
tecture in which processors within a cluster are tightly coupled
via a shared cluster cache for various processor-cache configu-
rations. Our results show that for parallel applications, clus-
tering via shared caches provides an effective mechanism for
increasing the total number of processors in a system, without
increasing the number of invalidations. Combining these
results with cost estimates for shared cluster cache implemen-
tations leads to two conclusions: 1) For a four cluster multipro-
cessor with single chip clusters, two processors per cluster with
a smaller cache provides higher performance and better cost/
performance than a single processor with a larger cache and 2)
this four cluster configuration can be scaled linearly in perfor-
mance by adding processors to each cluster using MCM pack-
aging techniques.

1  Introduction

Improvements in semiconductor fabrication and
packaging technology will soon make it possible to im-
plement computer architectures that exploit high-band-
width, low-latency communication among multiple high
performance functional units, and significant amounts of
cache. One possible way of implementing such an archi-
tecture would be to integrate the functional units and
memory on a single die [7]. This sort of implementation
is appealing because it eliminates the cost and perfor-
mance impact of chip-crossings inherent in a multiple
chip architecture in which the chips are individually
packaged and interconnected on a printed circuit board
(PCB). An alternative implementation technique is to
partition the various functional units and memory over
several chips and then interconnect these chips on a sin-
gle substrate using multichip-module (MCM) packaging
technology. This alternative has the potential to produce
more powerful computers than current single-chip im-
plementations. MCM technology can provide higher per-

formance because more functional units and larger mem-
ories can be placed in close proximity to one another.
These functional units and memories would be intercon-
nected using low latency MCM interconnections which
eliminate most of the extra delay associated with chip-to-
chip connections on a PCB. In fact, the electrical proper-
ties of the interconnect in most MCM technologies are
even better than the properties of the on-chip intercon-
nections. Thus, it may even be advantageous to use the
MCM interconnect for long intra-chip connections [3].

One of the ways to organize the functional units
and memory offered by a large chip or an MCM is as a
multiprocessor. Such a machine might consist of multi-
ple processors that share a single multi-ported cache in a
organization similar to the Alliant FX/8 [12]. In the de-
sign of such a multiprocessor one has the ability to
change the ratio of the number of processors to the
amount of cache. Thus, a key design question is what
should the ratio of processors to cache memory size be to
achieve the best cost/performance?

The objective of this paper is to address the above
question by looking at the performance trade-offs be-
tween cache size and number of processors for a single-
chip implementation and its use in building larger MCM
based multiprocessors. The performance of a fixed num-
ber of processors and varying cache size was studied by
Agarwal [1]. In addition, Rothberg et al. [17], examined
the relationship between multiprocessor cache sizes and
the number of processors from an applications program
perspective for large scale multiprocessors. Our evalua-
tion, however, combines the interaction of the applica-
tion programs, cache sizes, and small to medium num-
bers of processors. This allows us to present detailed per-
formance results for an important portion of the
processor-cache design space. 

The multiprocessor architectures that we consider
in this study are small to medium sized cluster-based
multiprocessors with four to thirty-two processors. We
expect that this sort of architecture will become common
place in workstations and compute servers in the future.
The benchmarks used in this study fall into two classes:
parallel applications running in single user mode and se-
quential applications that are run in multiprogramming
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mode. These benchmarks represent two of the important ways
that multiprocessors are used, i.e., as accelerators to reduce the
execution time of single applications and as compute-servers
for multiple users in a throughput oriented environment.

The rest of this paper presents the study of processor-
cache size trade-offs. In the next section we describe the base
architecture, simulation methodology, and the benchmark ap-
plications that are used in this study. The paper itself is divided
into three parts. In the first part, Section 3, we consider the ef-
fect on performance of changing the cache size and the number
of processors independently. The performance data provides
us with a set of curves that characterize the processor-cache de-
sign space for the two benchmark classes. In the second part,
Section 4, we analyze the area cost of a processor and of the
multiported non-blocking cache. In the third part, Section 5,
we use these costs to evaluate the cost/performance of a single
chip implementation and its ability to scale to larger MCM
based multiprocessors. Our conclusions are presented in Sec-
tion 6.

2  Methodology

2.1  Architecture

As microprocessors have improved in performance, us-
ing them to build a multiprocessor system that can achieve
high-bandwidth, low-latency communication over a single
shared bus has become very difficult because bus performance
has not scaled at the same rate as processor performance. This
is due to an inherent limitation of the bus topology [4]. 

Currently, typical multiprocessors have large per-pro-
cessor caches which are kept coherent using a shared bus and
snooping protocols [2]. In such an architecture, large caches
increase performance by reducing the communication traffic
on the shared bus. Large caches are also required to hold the
working sets of multiple applications that are executing con-
currently in a multiprogramming environment. 

The approach we advocate here to alleviate this prob-
lem is to cluster the processors so that there is a high-band-
width, low-latency connection between processors within a
cluster and a lower bandwidth inter-cluster bus. Clustering
provides the benefit that data that is actively shared among pro-
cessors within the cluster can be accessed very efficiently
without using the inter-cluster bus. 

There are two alternatives for organization of the clus-
ter. The first alternative is to have separate per processor cach-
es which are kept coherent over a high bandwidth intra-cluster
bus [13]. This organization has the advantage that the total
cache bandwidth scales with the number of processors in the
cluster. However, coherence misses and invalidation traffic on
the single shared bus can become a performance bottleneck.
The second alternative is to make the processors communicate
using a multi-ported shared cluster cache. While this alterna-
tive may take too many wires and pins if implemented on a
PCB, it is well suited to a single chip, or MCM implementation

where wires and I/O pins are abundant. This organization has
the added benefit that if the two processors are sharing a par-
ticular cache line there will only be a single copy of the line in
the shared cache as opposed to having two copies in each pro-
cessor’s cache. This makes the shared cache more efficient and
avoids the cache coherence overhead. The disadvantage of a
shared cache is that it could become a performance bottleneck.
Furthermore, if the processors in the cluster are executing in-
dependent processes, the conflicts in a shared cache can cause
higher miss rates than in a separate cache organization. 

The base architecture that will be used in this study is
shown in Figure 1. Each cluster consists of one to eight proces-
sors, a Shared Cluster Cache (SCC) for data and a separate in-
struction cache for each processor. To provide enough band-
width to prevent the SCC from becoming a performance bot-
tleneck, each processor has a dedicated port to a non-blocking
cache with multiple banks [23]. The banks in the SCC are in-
terleaved on cache lines; in other words, consecutive cache
lines are contained in consecutive cache banks. The path be-
tween the processors and the SCC’s banks is provided by the
cache interconnection network. Each SCC has access to phys-
ical main memory over the shared bus. The SCCs are kept co-
herent with one another by using a snoopy invalidation based
cache coherence protocol. 

2.2  Parallel Simulation

2.2.1 Benchmark Applications

Our multiprocessing benchmark applications consist of
three of the Stanford SPLASH benchmarks [20] namely: Bar-
nes-Hut, MP3D and Cholesky. All three applications are writ-
ten in C and use the Argonne National Laboratory macros [5]
which facilitate process creation, data sharing, and synchroni-
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zation. We refer the reader to [20] for a detailed description of
the benchmarks.

For each processor-cache configuration in our design
space, as mentioned in Section 1, we ran: Barnes-Hut using
1024 bodies, MP3D for 5 time steps using 10,000 particles and
Cholesky using the BCSSTK14 input file.

2.2.2 Simulation Model

In order to simulate our multiprocessor architecture, we
use Tango-Lite [8] to supply properly interleaved reference
events to a detailed multiprocessor cache simulator. Our mul-
tiprocessor cache simulator implements a four SCC based sys-
tem as described in Section 2.1. We address the issue of con-
tention at the shared cache by considering contention on each
individual bank within the SCC. In our model, each SCC has
four banks for each processor in its cluster.

The SCCs are kept coherent with each other using an
invalidation-based scheme on a snoopy bus. In this scheme a
write to a line in a particular SCC causes that line to be invali-
dated, if present, in each of the other SCCs. We chose a cache
line size of 16 bytes to help reduce false-sharing between clus-
ters. We assume that the latency to fetch a cache line from main
memory or from another SCC over the snoopy bus is fixed at
100 cycles. This latency is consistent with the ratio between
processor clock speeds and bus transaction latencies in the
most recent bus-based multiprocessor designs [6]. 

2.3  Multiprogramming Simulation

2.3.1 Benchmark Applications

Our multiprogramming benchmark workload consists
of six SPEC92 [24] integer benchmarks and two SPEC92
floating point benchmarks as shown in Table 2

2.3.2 Simulation Model

In order to simulate a multiprogramming workload, we
generated annotated versions of the individual benchmarks us-
ing pixie [22] which allowed us to collect dynamic memory
references and basic block information. The annotated pro-
grams were then run at the same time as separate processes
with the pixie references being piped into a multiprogram
scheduler. The scheduler uses a round-robin scheme with a

Application Description

Barnes-Hut Hierarchical N-body simulation of the evolu-
tion of galaxies

MP3D Particle-based simulation of rarefied hyper-
sonic flow

Cholesky Cholesky factorization of a sparse matrix

Table 1:  Multiprocessor Benchmark Applications

 

time quantum of 5 million processor cycles to schedule pro-
cesses on each processor in the cluster. A total of 100 million
pixie references are simulated, which resulted in an average of
30 million instructions per application. These runs were re-
peated for each processor-cache configuration in our design
space.

3  The Processor- Cache Size Performance 
Trade-off

3.1  Parallel Applications

In this section we study the processor-cache size design
space by looking at the three parallel applications: Barnes-Hut,
MP3D, and Cholesky. The design space consists of processor
configurations ranging from one to eight processors per clus-
ter, with SCC sizes ranging from 4 KB to 512 KB. Since we
are focussing on small to medium size multiprocessors, we
simulate four clusters resulting in a system configurations of 4
to 32 processors. The simulation results for each application
are presented in terms of normalized execution time as a func-
tion of SCC size. The simulation results for each application
are summarized in graph followed by a discussion of its perfor-
mance characteristics.

3.1.1 Barnes-Hut

We expected Barnes-Hut to achieve near-linear speed-
up on our cluster architecture since the invalidation character-
istics of four clusters effectively behave as four processors on
a snoopy bus. For Barnes-Hut, [14, 20] have shown that four
processors achieve linear speedup.

From Figure 2, it is apparent that greater than linear
speedup is achieved on configurations with medium to large

Application Type Description

sc Integer Spreadsheet calculations

espresso Integer Generates and optimizes PLA
structures

eqntott Integer Translates boolean equations into
truth tables

xlisp Integer LISP interpreter

compress Integer Lempel-Ziv data compression

gcc Integer C compiler

spice Flt. Point Analog circuit simulator

wave5 Flt. Point Maxwell’s equations solver

Table 2:  Multiprogramming Benchmark Applica-
tions
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SCC sizes. These speedups are given in Table 3. The better

than expected performance of Barnes-Hut is due to the in-
creased locality of reference within a cluster and can be ex-
plained in terms of Barnes-Hut’s data structures as follows:

Barnes-Hut is an N-body application that uses a hierar-
chical octree representation of three-dimensional space, allow-
ing the typical

 

 n2 force computations among n bodies to be re-
duced to n log n computations. This is achieved by construct-
ing a tree [19] in which each node approximates the
contribution of its children to the force computation. In order
to compute the force on a particular body, the tree is traversed
starting from the root. The depth of traversal along a particular
branch in the tree is dependent upon a closeness criterion
which allows the approximation to be used for sufficiently far

SCC Size
1 Proc./
cluster

2 Procs./
cluster

4 Procs./
cluster

8 Procs./
cluster

4 KB 1.0 1.9 3.0 4.5

8 KB 1.0 2.1 2.9 4.8

16 KB 1.0 2.2 2.8 4.6

32 KB 1.0 2.8 3.8 6.1

64 KB 1.0 3.0 5.3 7.9

128 KB 1.0 3.1 6.5 10.3

256 KB 1.0 3.2 6.8 11.8

512 KB 1.0 3.2 7.7 12.5

Table 3:  Barnes-Hut speedups relative to one proces-
sor per cluster

 

Figure 2:  Barnes-Hut performance characteristics.

  

B

B

B

B

B B B B
J

J
J

J
J J J J

H
H H

H
H H H H

F
F F

F
F F F F

4 8 16 32 64 128 256 512
0

2

4

6

8

10

12

14

16

18

20

22

24

26

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Cache Size (KB)

B 1 Processor/cluster

J 2 Processors/cluster

H 4 Processors/cluster

F 8 Processors/cluster

away bodies. Each processor is responsible for computing the
force on, and updating the positions and velocities of a subset
of the bodies, which are partitioned into groups based on the
structure of the tree [20]. If the partition is such that processors
within a cluster are assigned bodies which are adjacent in the
tree, we expect to see much greater data reuse and significant
reduction in miss rates due to prefetching [21]. The prefetching
is due to processors within a cluster traversing the same re-
gions of the tree at around the same times. Thus, one processor
effectively brings in data to the cache which will be used by the
remaining processors in the cluster before it is replaced or in-
validated. However, it is possible that some of the references
from multiple processors in the cluster will interfere with each
other destructively and begin to increase the overall miss rate.
In addition, we noted that as the number of processors per clus-
ter increases, the total number of invalidations actually per-
formed in the system decreases. The net effect of prefetching,
invalidations and destructive interference on an SCC’s read
miss rate is given in Table 4 for three sample SCC sizes. Al-

though prefetching and decreasing invalidations provide dra-
matic decreases in the read miss rate with multiple processors
per cluster for medium to large SCCs, destructive interference
is the dominating factor for small SCCs. In the medium to large
SCCs, the slight increase in miss rate between four and eight
processors per cluster demonstrates that there is still some de-
structive interference. However, the overall reduction in the
medium to large SCC miss rate with multiple processors pro-
vides the greater than linear performance as shown in Table 3.

3.1.2 MP3D

MP3D typically does not scale very well in invalidation
based architectures with large numbers of processors due to the
lack of locality and high numbers of invalidation misses from
frequent accesses to globally shared data [13]. The advantage
of the cluster based architecture is that invalidation traffic of an
n-cluster multiprocessor approaches that of a n-processor
snoopy cache coherent multiprocessor. In our simulations we
found that adding more processors to each cluster had almost
no effect on the invalidation traffic between clusters. This is in
marked contrast to adding more processors directly to the

Read Miss Rate

Processors
/cluster

8 KB 64 KB 256 KB

1 7.96% 4.55% 4.10%

2 7.82% 1.45% 0.92%

4 8.53% 0.86% 0.17%

8 10.33% 1.26% 0.26%

Table 4:  Effects of prefetching and destructive inter-
ference on read miss rates for Barnes-Hut. 
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shared bus which typically increases the invalidation traffic,
and in the case of MP3D becomes the main limiting factor in
obtaining speedup.

Figure 3 shows the performance characteristics of
MP3D. For the smallest SCC size of 4 KB, the self-relative
speedup of the eight processors per cluster to one processor per
cluster is approximately 3.8, whereas the self-relative speedup
for the largest SCC size of 512 KB is 7.2. The reason for this
is that unlike the Barnes-Hut application, prefetching does not
reduce the miss rates of MP3D due to the lack of locality; how-
ever, destructive interference does increase the miss rates of
smaller SCCs. Thus, medium to large SCCs achieve almost
linear speedup on the MP3D application.

3.1.3 Cholesky

The results for Cholesky using the BCSSTK14 input
file are given in Figure 4. As in the case of MP3D, we found
that there was almost no increase in invalidations as the num-
ber of processors increased. We found that the effects of
prefetching for the various processor-cache configurations was
existent but not as pronounced as in Barnes-Hut. For example,
the read miss rate for an SCC size of 32 KB decreases by 25%
as the number of processors per cluster is increased from one
to eight.

With these characteristics, we would have expected
good speedup, but in fact this was not the case. For the smallest
SCC size of 4 KB, the self-relative speedup of the eight proces-
sors per cluster to one processor per cluster is approximately
3.0, whereas the self-relative speedup for the largest SCC size
of 512 KB is only 3.5. The most probable reason for the lack
of speedup is the BCSSTK14 input file itself which is small
enough to allow reasonable simulation times, yet suffers from

 

Figure 3:  MP3D performance characteristics.
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limited concurrency, bad load balancing and high synchroniza-
tion overhead [20]. 

3.2  Multiprogramming Application

A major limitation of multiprogrammed performance
on both uniprocessors and multiprocessors is the increased
cache miss rates that an application experiences due to the ef-
fects of context switches. In the clustered architecture, we ex-
pect that the miss rates should increase further due to interfer-
ence caused by multiple processes making references simulta-
neously to the same shared cache. Figure 5 shows the

performance of a single cluster with the multiprogram work-
load. Figure 6 shows the self-relative speedups for executing
the total multiprogram workload as a function of the number of
processors per cluster. Since these numbers are normalized to
the one processor per cluster case for each SCC size, the deg-
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Figure 4:  Cholesky performance characteristics.
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Figure 5:  Multiprogramming performance characteristics.
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radation from the ideal performance is due to interference con-
flicts alone. As expected, increasing the SCC size reduces the
degradation and thus, the fraction of the total execution time
that the processor is idle waiting for memory requests. For ex-
ample, the normalized execution time for eight processors per
cluster increases by a factor of 4.1 in going from the smallest
SCC size of 4 KB to the largest of 512 KB. The trend is similar
for the other processor configurations.

4  Cluster Implementation and Costs

In this section we present possible chip implementa-
tions which can be used to realize our architecture model as de-
scribed in Section 2.1. In addition, we evaluate the cost of these
implementations. First, we present the implementation as-
sumptions used, followed by a discussion of four chip designs.

4.1  Implementation Assumptions

There are three components of processor performance
and cost that are directly affected by the organization of the
first level cache and the number of processors on a chip. These
are the load latency in processor cycles, the processor cycle
time and the total chip area. To evaluate the effect of different
cluster sizes on these components we must make assumptions
about the semiconductor process, in addition to the processor’s
area, pipeline, and cycle time. 

The semiconductor process technology that we assume
is a CMOS technology with 0.4µm gate lengths and three lay-
ers of interconnect. This technology should be available by the
end of 1996. Using this technology, it will be economical to
fabricate chips that are 18 mm on a side with a total die area of
300 mm2.
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Figure 6:  Multiprogramming speedup characteristics.

The processor that we use to estimate chip area is the
DEC Alpha 21064 [15]. This is a high-performance 64-bit pro-
cessor with integrated integer unit (IU), floating point unit
(FPU), instruction cache and data cache. This processor is im-
plemented in a 0.68µm gate-length semiconductor process. We
have linearly scaled the dimensions of this processor to fit
those of a 0.4µm process. In reality, scaling a processor dimen-
sions is more complex than this, however, this is a good first
approximation. We note that only the area of the IU, FPU and
instruction cache are scaled in this manner. The costs of a one
processor per cluster data cache and various SCCs are worked
out in detail. 

In the architectural studies we assumed the convention-
al five-stage integer pipeline shown in Figure 7. In this pipeline
the data access takes place during the memory stage and, con-
sequently, load instructions have a total latency of two cycles. 

Developing an estimate of processor cycle time is diffi-
cult because it is very dependent on semiconductor process
technology and circuit design. An often used metric when
comparing alternatives in the same process technology family,
is to measure cycle times in terms of gate delays rather than
nanoseconds. In our evaluation, we use the delay of an inverter
with a fanout of four (FO4) [11] as our basic unit of gate delay.
Using this metric, the Alpha 21064 chip, which represents very
aggressive circuit design, has a processor cycle time of 30 FO4
inverter delays [10]. It is certain that future microprocessor im-
plementations will continue to use aggressive circuit design to
achieve short processor cycle times; thus, we assume a proces-
sor cycle time of 30 FO4 inverter delays in our evaluation.

4.2  One Processor per Cluster

Figure 8 shows the floorplan of a chip that is imple-
mented in 0.4µm semiconductor process technology. The chip
has a total area of 204 mm2 and contains a 64-bit integer unit,
a 64-bit floating point unit, a 16 KB instruction cache and a sin-
gle ported 64 KB data cache composed of eight 8 KB blocks of
SRAM. The SRAM block area of 6.6 mm2 is based on a de-
tailed SRAM cell layout and includes the overhead for the
cache tags and the drivers to drive the data bus back to the
functional units. Because there are two rows of SRAM, the 2.2
mm width of the SRAM blocks also includes the wiring chan-
nels required to connect the bottom row of SRAM blocks to the
functional units. 

The 64 KB data cache size is dictated by processor cy-
cle time considerations. This is the largest direct-mapped
cache that can be accessed in 30 FO4 inverter delays. This ac-
cess time includes the time for the functional units to drive the
cache address lines and the time for the SRAM to drive the data
bus back to the functional units. 

Instr. Fetch Decode EXecute Memory WriteBack

Figure 7:  Five-stage integer pipeline.
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4.3  Two Processors per Cluster

Figure 9 shows the floorplan of a two processor per
cluster chip. This chip contains two integer units, two floating
point units and two 16 KB instruction caches, and one 32 KB
SCC. This two processor chip has a total area of 279 mm2

which is 37% larger than the single processor chip.

The SCC is triple ported and eight-way interleaved.
There are two processor ports and one cache controller port for
refilling the SCC. The ports are implemented by a crossbar
processor-cache interconnection network (ICN) that takes up
an area of 12.1 mm2, assuming a wire pitch of 1.6 µm. The
eight-way interleaved SCC is used to reduce the bank conflicts
between the processors. The SRAM blocks used in each of the
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Data cache
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8.5mm
Write

Buffer

8KB 8KB 8KB 8KB

8KB8KB8KB8KB
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Figure 8:  Floorplan of a one processor per cluster chip.
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Figure 9:  Floorplan of a two processors per cluster chip.

SCC’s banks are based on the same SRAM cell as the single
processor data cache. However, each block also contains an ar-
bitration unit, a write buffer and the extra drivers necessary to
drive the long wires in the crosssbar ICN. The result is that al-
though the SRAM block has an area of 8 mm2, it only contains
4 KB of cache. The SRAM block also contains an extra decod-
er which allows the block to be accessed from the top or the
bottom.

SCC bank arbitration is required to decide which pro-
cessor will access a bank each processor cycle. Due to the long
ICN wires that must be driven, arbitration takes 17 FO4 invert-
er delays to complete. To avoid increasing the CPU cycle time
above 30 FO4 inverter delays, an extra arbitration stage must
be added between the EXecute and the MEMory stage of the
five-stage pipeline. This increases the load latency to three cy-
cles and further complicates the pipeline bypassing that needs
to be implemented to minimize pipeline stalls [9]. 

4.4  Four Processors per Cluster

A four processor per cluster implementation will not fit
on a single chip even in 1996 technology. Therefore, it is nec-
essary to combine two of the two processor chips to implement
a four processor cluster. Such a multi-chip implementation will
require MCM packaging technology to reduce the perfor-
mance impact of chip crossings.

In the four processor per cluster design we have as-
sumed current MCM packaging technology from MicroMod-
ule Systems [16]. This technology provides two signal routing
layers with a 75 µm pitch. Even though the wires in this tech-
nology have negligible resistance and a capacitance per unit
length that is half of that of the on-chip wires, accessing the
cache on another chip in a single cycle would exceed the 30
FO4 inverter delay limit. To avoid increasing the processor cy-
cle time, another data cache access stage after the MEMory
stage is required. This increases the load latency to four cycles.

Figure 10 shows the floorplan of the four processors per
cluster building block. The major differences between this chip
and the two processor per cluster chip are a larger processor-
cache ICN, and a larger number of I/O pins. A larger proces-
sor-cache ICN, 12 mm 2 versus 10 mm 2, is required to provide
two extra ports to each cache bank. The extra I/O pins are re-
quired to provide communication with the two processors on
the other chip. We estimate that each processor needs 160 ad-
dress, data and control lines. Even though this results in a chip
with a total of 600 signal I/O pads, these pads can still be
placed in a pad frame around the perimeter of the chip. The to-
tal chip area, therefore, is estimated to be 297 mm 2 which is
46% larger than the single processor chip. 

4.5  Eight Processor Cluster

The eight processor per cluster building bock, shown in
Figure 11, extends the concept of an SCC based multiprocessor
one step further. This design requires the connection of each of
the eight banks to nine ports. Two processor-cache ICNs pro-
vide these ports. The major challenge in building this chip is
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providing enough I/Os to communicate with six other proces-
sors. To provide the 1100 signal I/O pads required on this chip,
technology such as IBMs controlled-collapse chip connection
(C4) in which pads are placed in an array on a separate layer of
metal on top of active circuity [18], must be utilized. Assuming
this type of technology, the total area of this chip is 306 mm2

which is 50% larger than the one processor chip.
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4KB 4KB 4KB 4KB 4KB 4KB 4KB 4KB

Cache control
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processor-cache ICN
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Figure 10:  Floorplan of a four processors per cluster building 
block.
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Figure 11:  Floorplan of a eight processors per cluster build-
ing block.

5  Comparing Shared-Cache 
Implementations 

Using the processor-cache performance trade-off re-
sults presented in Section 3, we can compare the performance
of the implementation alternatives presented in Section 4.
There are two interesting performance comparisons. These are
the single chip cluster implementation comparison and the
multiple chip MCM implementation comparison.

5.1  Single Chip Implementations

In this section we compare the implementation of a
cluster on a single chip. The single chip implementations are
one processor with a 64 KB data cache and two processors with
a 32 KB SCC. These implementations cannot be compared di-
rectly using the performance values from Section 3 because the
one processor implementation has a two cycle load latency and
two processor implementation has a three cycle load latency.

To account for different load latencies we used the ba-
sic-block profiling tool, pixstats [22], to compare the execution
times of the benchmarks on a uniprocessor with a perfect mem-
ory system for load latencies of two, three and four cycles. The
compiler that was used in this comparison scheduled instruc-
tions for a load latency of three cycles, thus the four cycle load
latency results are pessimistic. The other functional unit laten-
cies used in this comparison are those of the DEC Alpha 21064
[15]. The results of this comparison, normalized to a load la-
tency of 2 cycles, are shown in Table 5. These results over es-
timate the effect of load latency on execution time because the
cycles wasted in the memory system are not counted. Multiply-
ing the performance values in Section 3 by the factors in this
table provides a good approximation to the effect of load laten-
cy on program execution time.

Table 6 shows the relative execution time, taking ac-
count of the different load delays, for the two single chip clus-
ter configurations. It is clear that the four two-processor clus-
ters each with a 32 KB SCC performs much better than four
single processors each with a 64 KB data cache. On average,
the two-processor per cluster configuration is 70% faster than
the one processor configuration. We recall from Section 4.3,

Benchmark
Load Latency

2 cycles 3 cycles 4 cycles

Barnes-Hut 1.00 1.06 1.13

MP3D 1.00 1.07 1.14

Cholesky 1.00 1.07 1.16

Multiprogramming 1.00 1.08 1.17

Table 5:  Relative uniprocessor execution times for
various load latencies.
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that the two-processor chip requires 37% more area than the
one-process chip. The conclusion is that implementing two
processors on a chip rather than a larger cache not only im-
proves absolute performance, but also improves cost/perfor-
mance by 24% based on the die area of the processor. 

5.2  MCM Implementations

The four and eight processors per cluster configura-
tions, described in Section 4.4 and Section 4.5 respectively, are
implemented using slightly modified versions of the two pro-
cessors per cluster configuration of Section 4.3. This leads to
two MCM cluster implementations that we consider: 16 pro-
cessors configured as four processors per cluster with a 64 KB
SCC, and 32 processors configured as eight processors per
cluster with a 128 KB SCC. Table 7 shows the performance of
these implementations on the four benchmarks, including the
effects of a four cycle load latency. 

It is interesting to note, however, that the parallel appli-
cation performance of a 16 processor system built with four
processors per cluster is double the performance of an eight
processor system built with two processors per cluster, despite
the additional load latency. With the exception of Cholesky,
the performance increase in going from the 16 to 32 processor
system is linear. This indicates that scaling is possible in small
to medium sized multiprocessors using two processors per chip
as the basic building block. 

6  Conclusions

We have studied the performance of a cluster-based
multiprocessor architecture in which processors within a clus-
ter are tightly coupled via a shared cluster cache (SCC) for var-
ious processor-cache configurations. Our results show that for
parallel applications, clustering via shared caches provides an
effective mechanism for increasing the total number of proces-
sors in a system without increasing the number of invalida-
tions. In fact, on some applications, prefetching effects in the
SCC can dramatically reduce the miss rates and provide in
some cases greater than linear speedup. This prefetching oc-
curs as a natural consequence of sharing caches and does not
require the overhead of explicit prefetching instructions, pro-

Benchmark

Cluster Configuration

1 Processor/
64 KB

2 Processors/ 
32 KB

Barnes-Hut 13.1 5.8

MP3D 9.4 5.5

Cholesky 3.9 3.4

Multiprogramming 7.7 5.4

Table 6:  Performance comparison of single chip im-
plementations.

 

grammer intervention or compiler support. Multiprogramming
workloads, however, may suffer some degradation in perfor-
mance due to increased interference conflicts in the shared
cluster cache. For large caches, these effects are less pro-
nounced.

After exploring the processor-cache design space, we
examined cost/performance issues for four possible cluster
configurations. Our results show that in the near future, incor-
porating two processors on a single chip with a shared cluster
cache yields both better performance and cost/performance
than a single processor with a larger cache. In addition, modi-
fied versions of the two processor chip were found to be an ef-
fective building block for small to medium sized multiproces-
sors.
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